Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
17 decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
17 decrease » _ decrease (Expand Search), a decrease (Expand Search), we decrease (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
2721
Parameter optimization results of BiLSTM.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
2722
Descriptive statistical analysis of data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
2723
The MAE value of the model under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
2724
Three error values under raw data.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
2725
Panel quantile regression results.
Published 2024“…The empirical findings show that greater trade openness is associated with significantly higher CO2 emission, additionally; it demonstrates that the influence is heterogeneous across different CO2 emission quantiles in African countries. …”
-
2726
Decomposition of time scries plot.
Published 2025“…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
-
2727
Achieving Improved Ion Swarm Shaping Based on Ion Leakage Control in Ion Mobility Spectrometry
Published 2025“…In Ion Mobility Spectrometry (IMS), ion gates are essential for controlling ion flow, significantly impacting detection sensitivity and resolution. …”
-
2728
-
2729
-
2730
-
2731
-
2732
-
2733
-
2734
-
2735
-
2736
Fractal dimension evolution of oil droplet flame under different spray hole diameter.
Published 2025Subjects: -
2737
Evolution of flame fractal dimension of oil droplets with different volumes.
Published 2025Subjects: -
2738
Global average ignition delay time of oil droplets with volume of 0.1-0.5ml.
Published 2025Subjects: -
2739
Global average ignition delay time of oil droplets with diameter of 0.4-0.7 mm.
Published 2025Subjects: -
2740