Showing 3,201 - 3,220 results of 21,342 for search '(( significant decrease decrease ) OR ( significant ((a decrease) OR (small decrease)) ))', query time: 0.63s Refine Results
  1. 3201
  2. 3202
  3. 3203
  4. 3204
  5. 3205
  6. 3206
  7. 3207
  8. 3208
  9. 3209
  10. 3210
  11. 3211
  12. 3212
  13. 3213
  14. 3214
  15. 3215

    Achieving Improved Ion Swarm Shaping Based on Ion Leakage Control in Ion Mobility Spectrometry by Jiyao Wang (2121157)

    Published 2025
    “…Simulations and experiments demonstrate that precise voltage adjustments effectively minimize ion leakage, enhancing resolving power by 50% (reaching a maximum of 106), while the corresponding decrease in signal intensity follows the <i>I</i><sub>p</sub>–<i>R</i><sub>p</sub> linear relationship. …”
  16. 3216
  17. 3217

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  18. 3218

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  19. 3219

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”
  20. 3220

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. Subsequently, STL decomposition decoupled the series into trend, seasonal, and residual components for component-specific modeling, achieving a 22.6% reduction in average MAE compared to raw data modeling. …”