Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
7261
-
7262
-
7263
-
7264
-
7265
Cerium Oxide Nanoparticle Protects Maize from Cobalt Stress: Insights from Transcriptomics and Oxidative Stress Response Analysis
Published 2025“…Taken together, this study demonstrates that CeO<sub>2</sub> NPs ameliorate Co toxicity in maize by preserving leaf ultrastructure, enhancing antioxidant defense and nutrient uptake, decreasing Co accumulation in roots and shoots, and providing a promising nanozyme-based approach for maize protection against Co-induced toxicity.…”
-
7266
-
7267
-
7268
-
7269
-
7270
-
7271
-
7272
-
7273
-
7274
-
7275
-
7276
-
7277
-
7278
-
7279
Major hyperparameters of RF-SVR.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”
-
7280
Pseudo code for coupling model execution process.
Published 2024“…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …”