Showing 1,461 - 1,480 results of 26,902 for search '(( significant decrease decrease ) OR ( significant ((cause decrease) OR (causes increased)) ))*', query time: 0.52s Refine Results
  1. 1461
  2. 1462
  3. 1463

    Data_Sheet_1_RETRACTED: The Variation of Nasal Microbiota Caused by Low Levels of Gaseous Ammonia Exposure in Growing Pigs.pdf by Tongxin Wang (2524945)

    Published 2025
    “…Four microbial genera (Pseudomonas, Lactobacillus, Prevotella, and Bacteroides) were significantly decreased at 25 ppm, while only two genera (Moraxella and Streptococcus) were increased at 25 ppm. …”
  4. 1464

    Primers used for real-time qPCR. by Eloise Parry-Nweye (7548998)

    Published 2025
    “…The results show that the infectivity of aerosolized Phi6 in air decreased by ≥ 1 log<sub>10</sub> as the relative humidity (RH) increased from 25% to 75% but then increased by ≥ 1 log<sub>10</sub> as the RH further increased to 85%, resulting in a characteristic V-shape curve which varied with exposure time. …”
  5. 1465

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  6. 1466

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  7. 1467

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  8. 1468

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  9. 1469

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  10. 1470
  11. 1471
  12. 1472
  13. 1473
  14. 1474
  15. 1475
  16. 1476
  17. 1477
  18. 1478
  19. 1479
  20. 1480