Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
force decrease » fold decrease (Expand Search), forces increased (Expand Search)
increase » increased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
force decrease » fold decrease (Expand Search), forces increased (Expand Search)
increase » increased (Expand Search)
-
1661
-
1662
-
1663
-
1664
-
1665
-
1666
-
1667
Loading mode.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1668
Model and meshes.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1669
Pile foundation section.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1670
Strain-stress maps of vertical pile foundation.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1671
Displacement-inclination variation graph.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1672
Soil modeling and mechanical parameters.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1673
Location of monitored piles.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1674
Pile-soil interaction.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1675
Bending moment in the tension zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1676
Displacement cloud maps.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1677
Morphing mesh.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1678
Bending moment in the pressure zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1679
VPF and VIPF.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
1680