Showing 41 - 60 results of 509 for search '(( significant decrease decrease ) OR ( significant ((gap decrease) OR (a decrease)) ))~', query time: 0.65s Refine Results
  1. 41
  2. 42
  3. 43

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. …”
  4. 44

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. …”
  5. 45

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. …”
  6. 46

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. …”
  7. 47

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. …”
  8. 48

    Charge-Transfer-Driven Electrical Conductivity in Single Crystals of Assembled Triphenylamine Bis-urea Macrocycles by Fahidat A. Gbadamosi (22123930)

    Published 2025
    “…This is attributed to efficient CT observed in spectroscopic analyses and is consistent with the computed small HOMO–LUMO gap (2.92 eV) in a model of the host–guest system. …”
  9. 49
  10. 50

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  11. 51

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  12. 52

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  13. 53

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  14. 54

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  15. 55

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  16. 56

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  17. 57

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  18. 58

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  19. 59

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”
  20. 60

    Heterogeneous Condensation on Simplified Viral Envelope Protein Structures by Kawkab Ahasan (18784843)

    Published 2025
    “…The rapid initial condensation fills up the gap between the pillars, reducing the active surface area and leading to a gradual decrease and a plateau in the condensation rate. …”