يعرض 2,701 - 2,720 نتائج من 21,342 نتيجة بحث عن '(( significant decrease decrease ) OR ( significant ((greater decrease) OR (we decrease)) ))*', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 2701

    Fig 19 - حسب Zhezhe Zhang (19704587)

    منشور في 2024
    الموضوعات:
  2. 2702

    Fig 8 - حسب Zhezhe Zhang (19704587)

    منشور في 2024
    الموضوعات:
  3. 2703
  4. 2704
  5. 2705
  6. 2706
  7. 2707

    Major hyperparameters of RF-SVR. حسب Jintao Li (448681)

    منشور في 2024
    "…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
  8. 2708

    Pseudo code for coupling model execution process. حسب Jintao Li (448681)

    منشور في 2024
    "…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
  9. 2709

    Major hyperparameters of RF-MLPR. حسب Jintao Li (448681)

    منشور في 2024
    "…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
  10. 2710

    Results of RF algorithm screening factors. حسب Jintao Li (448681)

    منشور في 2024
    "…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
  11. 2711

    Schematic diagram of the basic principles of SVR. حسب Jintao Li (448681)

    منشور في 2024
    "…For instance, the RF-MLPR model achieved a 3.7%–6.5% improvement in the Nash-Sutcliffe efficiency (NSE) metric across four hydrological stations compared to the RF-SVR model. (4) Prediction accuracy decreased with longer forecast periods, with the R<sup>2</sup> value dropping from 0.8886 for a 1-month forecast to 0.6358 for a 12-month forecast, indicating the increasing challenge of long-term predictions due to greater uncertainty and the accumulation of influencing factors over time. (5) The RF-MLPR model outperformed the RF-SVR model, demonstrating a superior ability to capture the complex, nonlinear relationships inherent in the data. …"
  12. 2712
  13. 2713
  14. 2714
  15. 2715
  16. 2716
  17. 2717
  18. 2718
  19. 2719
  20. 2720