يعرض 1,421 - 1,440 نتائج من 24,549 نتيجة بحث عن '(( significant decrease decrease ) OR ( significant ((inter decrease) OR (greater increase)) ))', وقت الاستعلام: 0.73s تنقيح النتائج
  1. 1421
  2. 1422
  3. 1423
  4. 1424
  5. 1425
  6. 1426
  7. 1427
  8. 1428
  9. 1429

    The flow chart of the study. حسب Changxu Wang (17826805)

    منشور في 2024
    الموضوعات:
  10. 1430
  11. 1431

    S1 File - حسب Chantelle M. de Vet (16535257)

    منشور في 2024
    الموضوعات:
  12. 1432
  13. 1433

    PCA-CGAN model parameter settings. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
  14. 1434

    MIT-BIH dataset proportion analysis chart. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
  15. 1435

    Wavelet transform preprocessing results. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
  16. 1436

    PCAECG_GAN. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
  17. 1437

    MIT dataset expansion quantities and Proportions. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
  18. 1438

    Experimental hardware and software environment. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
  19. 1439

    PCA-CGAN K-fold experiment table. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
  20. 1440

    Classification model parameter settings. حسب Chao Tang (10925)

    منشور في 2025
    "…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"