Showing 1 - 20 results of 339 for search '(( significant decrease decrease ) OR ( significant ((larger decrease) OR (larger increases)) ))~', query time: 0.43s Refine Results
  1. 1

    Scheme of g-λ model with larger values λ. by Zhanfeng Fan (20390992)

    Published 2024
    “…The findings suggest that when λ is respectively equal to 4.19, 8.57, 10, and 12.15, the peak particle velocity (PPV) of the transmitted waves is significantly close to the incident wave amplitude. Furthermore, when λ is fixed, the energy transmission coefficient increases with the incident wave amplitude but decreases with the incident wave frequency. …”
  2. 2
  3. 3

    <b>Nest mass in forest tits </b><b><i>Paridae</i></b><b> </b><b>increases with elevation and decreasing body mass, promoting reproductive success</b> by Clara Wild (19246606)

    Published 2025
    “…We predicted that nest mass should increase with elevation and canopy openness, due to thermoregulation being more demanding in colder or warmer climatic conditions, and decrease with body mass, as larger species have greater thermoregulatory capabilities. …”
  4. 4
  5. 5

    Parameters used in the simulations. by Yongfeng Zhu (7361045)

    Published 2025
    “…At the sample scale, the peak deviatoric stress increased by approximately 15–40% as aspect ratio decreased from 1.00 to 0.33 and sphericity decreased from 1.00 to 0.11. …”
  6. 6

    Two ellipsoidal particles in contact. by Yongfeng Zhu (7361045)

    Published 2025
    “…At the sample scale, the peak deviatoric stress increased by approximately 15–40% as aspect ratio decreased from 1.00 to 0.33 and sphericity decreased from 1.00 to 0.11. …”
  7. 7

    Different contact patterns for two ellipsoids. by Yongfeng Zhu (7361045)

    Published 2025
    “…At the sample scale, the peak deviatoric stress increased by approximately 15–40% as aspect ratio decreased from 1.00 to 0.33 and sphericity decreased from 1.00 to 0.11. …”
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20