يعرض 1,741 - 1,760 نتائج من 2,767 نتيجة بحث عن '(( significant decrease decrease ) OR ( significant ((mean decrease) OR (a decrease)) ))~', وقت الاستعلام: 0.31s تنقيح النتائج
  1. 1741

    DSC block and its application network structure. حسب Yingying Liu (360782)

    منشور في 2025
    "…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …"
  2. 1742

    The structure of multi-scale residual block [30]. حسب Yingying Liu (360782)

    منشور في 2025
    "…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …"
  3. 1743

    The structure of IRAU and Res2Net+ block [22]. حسب Yingying Liu (360782)

    منشور في 2025
    "…The actual accuracy and mean latency time of the model were 92.43% and 260ms, respectively. …"
  4. 1744

    Dataset visualization diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  5. 1745

    Dataset sample images. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  6. 1746

    Performance comparison of different models. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  7. 1747

    C2f and BC2f module structure diagrams. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  8. 1748

    YOLOv8n detection results diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  9. 1749

    YOLOv8n-BWG model structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  10. 1750

    BiFormer structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  11. 1751

    YOLOv8n-BWG detection results diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  12. 1752

    GSConv module structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  13. 1753

    Performance comparison of three loss functions. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  14. 1754

    mAP0.5 Curves of various models. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  15. 1755

    Network loss function change diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  16. 1756

    Comparative diagrams of different indicators. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  17. 1757

    YOLOv8n structure diagram. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  18. 1758

    Geometric model of the binocular system. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  19. 1759

    Enhanced dataset sample images. حسب Yaojun Zhang (389482)

    منشور في 2025
    "…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …"
  20. 1760

    Knockdown of <i>fhplk1</i> disrupts growth and cell proliferation in juvenile <i>Fasciola hepatica in vitro.</i> حسب Paul McCusker (634425)

    منشور في 2025
    "…<b>(C)</b> Mean # EdU<sup>+</sup> nuclei ±SEM significantly decreased after four weeks of <i>fhplk1</i> dsRNA treatments in juvenile <i>F. hepatica</i> (n ≥ 15 for each treatment; Mann-Whitney U test). …"