Showing 2,221 - 2,240 results of 2,564 for search '(( significant decrease decrease ) OR ( significant ((non decrease) OR (a decrease)) ))~', query time: 0.30s Refine Results
  1. 2221

    Table 1_MicroRNAs regulate alveolar macrophage homeostasis and its function in lung fibrosis.xlsx by Nirmal Parajuli (751983)

    Published 2025
    “…Alveolar macrophages (AMs) are essential for maintaining lung homeostasis and play a significant role in the development of lung fibrosis. …”
  2. 2222

    Data Sheet 1_MicroRNAs regulate alveolar macrophage homeostasis and its function in lung fibrosis.docx by Nirmal Parajuli (751983)

    Published 2025
    “…Alveolar macrophages (AMs) are essential for maintaining lung homeostasis and play a significant role in the development of lung fibrosis. …”
  3. 2223

    Land use intensity classes standard. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
  4. 2224

    Ablation Experiment GradCAM Heatmap. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  5. 2225

    Land use transfer matrix 1990-2020 (km<sup>2</sup>). by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
  6. 2226

    Study area habitat quality LISA clustering map. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
  7. 2227

    Space-to-depth convolution. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  8. 2228

    Data augmentation. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  9. 2229

    Side angle tea picking. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  10. 2230

    Comparison results of ablation experiments. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  11. 2231

    Spato-temporal changes in land use types. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
  12. 2232

    Table of dataset division. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  13. 2233

    Pattern indices of landscape levels. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”
  14. 2234

    Striking image. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  15. 2235

    Precision, recall, F1-Score curve. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  16. 2236

    Model comparison experimental results. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  17. 2237

    Slicing aided hyper inference algorithm. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  18. 2238

    Improved YOLOv10 network structure. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  19. 2239

    Loss function variation curve. by Chunhua Yang (346871)

    Published 2025
    “…The experimental results demonstrate that when compared to YOLOv10, S-YOLOv10-ASI shows significant improvements across various metrics. Specifically, Bounding Box Regression Loss decreases by over 30% in the training set, while Classification Loss and Bounding Box Regression Loss drop by more than 60% in the validation set. …”
  20. 2240

    Type level landscape index changes in 1990-2020. by Chao Ma (207385)

    Published 2025
    “…The habitat quality shows a spatial distribution pattern of “high in the surrounding areas and low in the central areas”, and autocorrelation analysis shows that county-level units have significant spatial agglomeration effects. …”