Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
point decrease » point increase (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
point decrease » point increase (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
321
-
322
-
323
Descriptive statistics.
Published 2024“…It includes absenteeism, decreased motivation and academic performance, and a cynical attitude toward peers and teachers. …”
-
324
Mediation results confirmed by Sobel test.
Published 2024“…It includes absenteeism, decreased motivation and academic performance, and a cynical attitude toward peers and teachers. …”
-
325
Mediation analysis.
Published 2024“…It includes absenteeism, decreased motivation and academic performance, and a cynical attitude toward peers and teachers. …”
-
326
-
327
-
328
-
329
-
330
-
331
Fuchioka dataset 251021.
Published 2025“…Trochlear and patellar cartilage thicknesses were measured from 3D-MRI images at both time points. Changes exceeding 0.1 mm (the validated measurement precision threshold) were considered significant. …”
-
332
Regression results of the Callaway method.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
333
Regression results of crowding out effects.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
334
Article data.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
335
Overidentification test results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
336
Quantile regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
337
Instrumental variable regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
338
Other robust regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
339
Baseline regression results.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”
-
340
Results of propensity score matching.
Published 2025“…During this lag period, the effect on the number of patent declines by 8.475% to 28.283%, while the impact on the number of citations of patents decreases by 55.696% to 73.214%. (4) The significant promotional effect of science and technology talent policies is most pronounced in non-state-owned enterprises and those with high R&D investment, but such policies do not have a notable impact on state-owned enterprises or those with low R&D investment. …”