Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
point decrease » point increase (Expand Search)
nn decrease » _ decrease (Expand Search), a decrease (Expand Search), mean decrease (Expand Search)
-
821
Multiple linear regression analysis for psychological distress (GHQ-12 scores).
Published 2025Subjects: -
822
Amplitude for A/L = 0.29.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
823
Top view of the experimental setup.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
824
Amplitude for A/L = 0.338.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
825
Parameters of energy harvesting.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
826
Graph for Max Amplitude/Length at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
827
Amplitude for A/L = 0.02.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
828
Graph for maximum Frequency at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
829
Graph for maximum Power at G<sub>y</sub> = 0.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
830
Amplitude for A/L = 0.03.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
831
Summary of experimentation results.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
832
Piezoelectric eel.
Published 2025“…The flapping frequency, amplitude, and optimal power of the rough cylinders were analyzed and compared with that of smooth cylinders experimentally, and the optimum point () in terms of power was attained. Increased surface roughness significantly reduced power output, flapping frequency, and amplitude. …”
-
833
-
834
-
835
-
836
-
837
-
838
-
839
Box plot displaying the distributions of the deconvolution derived proportions of cell types.
Published 2024Subjects: -
840
Spearman correlation of age with proportions of cell types in men, for each brain region.
Published 2024Subjects: