Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
greater decrease » greatest decrease (Expand Search), greater increase (Expand Search), greater disease (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
-
1761
Mean readiness score of modern family planning service by facility type in 2014 and 2017.
Published 2025Subjects: -
1762
Overall and domain-specific mean readiness score by survey years, 2014 and 2017.
Published 2025Subjects: -
1763
Percentage distribution (weighted) of surveyed facilities in 2014 and 2017.
Published 2025Subjects: -
1764
-
1765
-
1766
-
1767
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1768
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1769
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1770
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1771
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1772
-
1773
-
1774
-
1775
-
1776
-
1777
-
1778
-
1779
-
1780