بدائل البحث:
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
time increased » rate increased (توسيع البحث), use increased (توسيع البحث)
time decrease » sizes decrease (توسيع البحث), teer decrease (توسيع البحث), we decrease (توسيع البحث)
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
time increased » rate increased (توسيع البحث), use increased (توسيع البحث)
time decrease » sizes decrease (توسيع البحث), teer decrease (توسيع البحث), we decrease (توسيع البحث)
-
1161
-
1162
-
1163
-
1164
-
1165
-
1166
-
1167
-
1168
-
1169
-
1170
-
1171
-
1172
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
1173
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
1174
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
1175
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
1176
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
منشور في 2025"…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …"
-
1177
-
1178
-
1179
Vehicle fuel consumption and pollutant emissions at different penetration rate of CAVs.
منشور في 2024الموضوعات: -
1180