Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
increase » increased (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
increase » increased (Expand Search)
-
1
Cohort characteristics.
Published 2024“…</p><p>Results</p><p>The analysis reveals a significant decrease in all health services utilization from 2016 to 2019, followed by an increase until 2022. …”
-
2
Contrasting Size Dependence of Photochemical Lifetimes of Polypropylene and Expanded Polystyrene Microplastics in Surface Waters
Published 2025“…Sunlight-driven photochemistry can dissolve buoyant microplastics, producing dissolved organic carbon (DOC). We hypothesized that plastic dissolution would increase linearly with increasing surface area (SA)-to-volume (V) ratio as plastics decrease in size. …”
-
3
Structure diagram of ensemble model.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
4
Fitting formula parameter table.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
5
Test plan.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
6
Fitting surface parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
7
Model generalisation validation error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
8
Empirical model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
9
Fitting curve parameters.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
10
Test instrument.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
11
Empirical model establishment process.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
12
Model prediction error trend chart.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
13
Basic physical parameters of red clay.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
14
BP neural network structure diagram.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
15
Structure diagram of GBDT model.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
16
Model prediction error analysis index.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
17
Fitting curve parameter table.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
18
Model prediction error analysis.
Published 2024“…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …”
-
19
BMI groups by SES.
Published 2025“…We also found that the relationship between BMI and PTB was not linear but curvilinear, bridging the gap in the conclusions of other studies. …”
-
20
BMISES_Data_Part2.
Published 2025“…We also found that the relationship between BMI and PTB was not linear but curvilinear, bridging the gap in the conclusions of other studies. …”