يعرض 1 - 20 نتائج من 242 نتيجة بحث عن '(( significant decrease decrease ) OR ( significant ((we decrease) OR (soil increased)) ))~', وقت الاستعلام: 0.32s تنقيح النتائج
  1. 1
  2. 2
  3. 3

    Data of soil response to nitrogen deposition.xlsx حسب Runcheng Zhu (20305665)

    منشور في 2024
    "…To fill this gap, we conducted an investigation into the effect of different N deposition levels on N-poor soil in tropical regions, aiming to ascertain the response of soil acidification to both increased and decreased N deposition.…"
  4. 4

    Coverage of plant species in each plot. حسب Xuemei Xiang (20756894)

    منشور في 2025
    "…With the increase of warming and nitrogen deposition, the Shannon-Wiener index of plants increased first and then decreased. …"
  5. 5

    Specifications and effects of heating devices. حسب Xuemei Xiang (20756894)

    منشور في 2025
    "…With the increase of warming and nitrogen deposition, the Shannon-Wiener index of plants increased first and then decreased. …"
  6. 6

    Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses حسب Jing Wang (6206297)

    منشور في 2025
    "…By compiling a global data set of 1,782 paired observations from 185 publications, we show that land use conversion from natural to managed ecosystems significantly reduced NNM by 7.5% (−11.5, −2.8%) and increased NN by 150% (86, 194%), indicating decreasing N availability while increasing potential N loss through denitrification and nitrate leaching. …"
  7. 7

    Comparative data of different soil samples. حسب Gourab Saha (8987405)

    منشور في 2025
    "…<div><p>As the world population is increasing day by day, so is the need for more advanced automated precision agriculture to meet the increasing demands for food while decreasing labor work and saving water for crops. …"
  8. 8

    Structure diagram of ensemble model. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  9. 9

    Fitting formula parameter table. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  10. 10

    Test plan. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  11. 11

    Fitting surface parameters. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  12. 12

    Model generalisation validation error analysis. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  13. 13

    Empirical model prediction error analysis. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  14. 14

    Fitting curve parameters. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  15. 15

    Test instrument. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  16. 16

    Empirical model establishment process. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  17. 17

    Model prediction error trend chart. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  18. 18

    Basic physical parameters of red clay. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  19. 19

    BP neural network structure diagram. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"
  20. 20

    Structure diagram of GBDT model. حسب Hongqi Wang (2208238)

    منشور في 2024
    "…By developing and validating both empirical and machine learning prediction models, we unravel the evolution of thermal conductivity in response to these factors: within the range of influencing variables, thermal conductivity exhibits an exponential or linear increase with rising water content and dry density, while it decreases exponentially with increasing freeze-thaw cycles. …"