Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant benefits » significant effects (Expand Search)
Showing 4,141 - 4,160 results of 21,342 for search '(( significant decrease decrease ) OR ( significant benefits decrease ))', query time: 0.33s Refine Results
  1. 4141
  2. 4142
  3. 4143

    Effect of DM, and/or <i>M. charantia</i> on the immuno-expressional level of NGF protein in maternal cerebellar tissue of different groups. by Amoura M. Abou-El-Naga (21001524)

    Published 2025
    “…Figs <b>(E & F):</b> Diabetic mothers have a significant decrease in the expression of NGF protein across all three layers of the cerebellar cortex. …”
  4. 4144

    Regression situation of each cross-section. by Puzhen An (21169189)

    Published 2025
    “…Furthermore, as the coarse particle content rises, the strata loss rate tends to decrease gradually. The final settlement curve, calculated using the method that considers changes in coarse particle content, is closer to the measured values. …”
  5. 4145

    Statistical Table of Formation Loss Rate <i>V1.</i> by Puzhen An (21169189)

    Published 2025
    “…Furthermore, as the coarse particle content rises, the strata loss rate tends to decrease gradually. The final settlement curve, calculated using the method that considers changes in coarse particle content, is closer to the measured values. …”
  6. 4146

    Fitting Results for Each Operating Condition. by Puzhen An (21169189)

    Published 2025
    “…Furthermore, as the coarse particle content rises, the strata loss rate tends to decrease gradually. The final settlement curve, calculated using the method that considers changes in coarse particle content, is closer to the measured values. …”
  7. 4147

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  8. 4148

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  9. 4149

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  10. 4150
  11. 4151

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  12. 4152
  13. 4153

    Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane by Ching Yoong Loh (17863097)

    Published 2025
    “…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
  14. 4154
  15. 4155
  16. 4156
  17. 4157
  18. 4158

    Mineral component content. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  19. 4159

    Micro-parameters of the numerical model. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”
  20. 4160

    Microcracks on the surface of the coal sample. by Chuan Li (158692)

    Published 2024
    “…As the temperature increases, the proportion of tensile cracks decreases, while shear cracks become more prevalent. …”