Showing 941 - 960 results of 5,404 for search '(( significant decrease decrease ) OR ( significant factor decrease ))~', query time: 0.42s Refine Results
  1. 941

    Flowchart of the STL. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  2. 942

    SARIMA predicts season components. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  3. 943

    BWO-BiLSTM model prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  4. 944

    Bi-LSTM architecture diagram. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  5. 945

    STL Linear Combination Forecast Graph. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  6. 946

    LOSS curves for BWO-BiLSTM model training. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  7. 947

    Analysis of STL-PCA prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  8. 948

    Accumulated contribution rate of PCA. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  9. 949

    Figure of ablation experiment. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  10. 950

    Flowchart of the STL-PCA-BWO-BiLSTM model. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  11. 951

    Parameter optimization results of BiLSTM. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  12. 952

    Descriptive statistical analysis of data. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  13. 953

    The MAE value of the model under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  14. 954

    Three error values under raw data. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  15. 955

    Decomposition of time scries plot. by Xiangjuan Liu (618000)

    Published 2025
    “…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
  16. 956
  17. 957
  18. 958
  19. 959
  20. 960