يعرض 101 - 120 نتائج من 349 نتيجة بحث عن '(( significant decrease decrease ) OR ( significant i.e decrease ))~', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 101
  2. 102
  3. 103
  4. 104
  5. 105
  6. 106
  7. 107
  8. 108
  9. 109
  10. 110
  11. 111
  12. 112
  13. 113
  14. 114
  15. 115
  16. 116
  17. 117
  18. 118
  19. 119

    Addressing Imbalanced Classification Problems in Drug Discovery and Development Using Random Forest, Support Vector Machine, AutoGluon-Tabular, and H2O AutoML حسب Ayush Garg (21090944)

    منشور في 2025
    "…The important findings of our studies are as follows: (i) there is no effect of threshold optimization on ranking metrics such as AUC and AUPR, but AUC and AUPR get affected by class-weighting and SMOTTomek; (ii) for ML methods RF and SVM, significant percentage improvement up to 375, 33.33, and 450 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy, which are suitable for performance evaluation of imbalanced data sets; (iii) for AutoML libraries AutoGluon-Tabular and H2O AutoML, significant percentage improvement up to 383.33, 37.25, and 533.33 over all the data sets can be achieved, respectively, for F1 score, MCC, and balanced accuracy; (iv) the general pattern of percentage improvement in balanced accuracy is that the percentage improvement increases when the class ratio is systematically decreased from 0.5 to 0.1; in the case of F1 score and MCC, maximum improvement is achieved at the class ratio of 0.3; (v) for both ML and AutoML with balancing, it is observed that any individual class-balancing technique does not outperform all other methods on a significantly higher number of data sets based on F1 score; (vi) the three external balancing techniques combined outperformed the internal balancing methods of the ML and AutoML; (vii) AutoML tools perform as good as the ML models and in some cases perform even better for handling imbalanced classification when applied with imbalance handling techniques. …"
  20. 120