Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
insights decrease » slight decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
insights decrease » slight decrease (Expand Search)
-
241
-
242
-
243
-
244
HSF2 regulates lytic gene expression in latency and during the lytic phase.
Published 2025Subjects: -
245
-
246
Oligonucleotides used in this study.
Published 2024“…Collectively, these findings provide complementary insights, revealing that disruption of 5′-NT significantly attenuated <i>M</i>. …”
-
247
Data supporting the findings of this study.
Published 2024“…Collectively, these findings provide complementary insights, revealing that disruption of 5′-NT significantly attenuated <i>M</i>. …”
-
248
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
249
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
250
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
251
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
252
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
253
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
254
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
255
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
256
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
257
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
258
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
259
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”
-
260
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…The results indicate that initial condensation rates on surfaces with intermediate <i>p/d</i> ratios (e.g., 1.2–1.3) are significantly higher due to increased active surface area and droplet cluster formations. …”