Showing 1,281 - 1,300 results of 2,503 for search '(( significant decrease decrease ) OR ( significant interaction decrease ))~', query time: 0.34s Refine Results
  1. 1281
  2. 1282
  3. 1283
  4. 1284
  5. 1285

    Image6_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  6. 1286

    Image3_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  7. 1287

    Image4_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  8. 1288

    Table3_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.docx by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  9. 1289

    Table2_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.docx by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  10. 1290

    Image5_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  11. 1291

    Image1_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  12. 1292

    Image2_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.jpeg by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  13. 1293

    Table1_Overexpression of TaPIP1A enhances drought and salt stress tolerance in Arabidopsis: cross-species conservation and molecular dynamics.docx by Jie Han (128758)

    Published 2025
    “…We demonstrate that TaPIP1A enhances tolerance to salt and drought stress through specific protein-protein interactions and transcriptional regulation. In TaPIP1A knockout wheat strains, there was a significant decrease in stress tolerance, whereas Arabidopsis plants overexpressing TaPIP1A exhibited marked improvements in survival under similar stress conditions. …”
  14. 1294
  15. 1295
  16. 1296

    Attitude towards NTDs in the study Area. by Uchechukwu M. Chukwuocha (6685790)

    Published 2025
    “…<div><p>Background</p><p>Neglected Tropical Diseases (NTDs) continue to significantly impact marginalized communities, contributing to high morbidity, stigma, and social exclusion. …”
  17. 1297

    Dataset of results. by Uchechukwu M. Chukwuocha (6685790)

    Published 2025
    “…<div><p>Background</p><p>Neglected Tropical Diseases (NTDs) continue to significantly impact marginalized communities, contributing to high morbidity, stigma, and social exclusion. …”
  18. 1298

    Respondents’ perception about the public artwork. by Uchechukwu M. Chukwuocha (6685790)

    Published 2025
    “…<div><p>Background</p><p>Neglected Tropical Diseases (NTDs) continue to significantly impact marginalized communities, contributing to high morbidity, stigma, and social exclusion. …”
  19. 1299
  20. 1300