Showing 521 - 540 results of 1,240 for search '(( significant decrease decrease ) OR ( significant linear decrease ))~', query time: 0.27s Refine Results
  1. 521
  2. 522
  3. 523
  4. 524
  5. 525

    Mean parameter values for the selected crops. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  6. 526

    Performance comparison of ML models. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  7. 527

    Comparative data of different soil samples. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  8. 528

    Confusion matrix of random forest model. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  9. 529

    Sensor value scenario for fuzzy logic algorithm. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  10. 530

    Evaluation metrics of selected ML models. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  11. 531

    Block diagram of the proposed system. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  12. 532

    Chart for applicable amount of fertilizers. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  13. 533

    Cost analysis of irrigation controller unit. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  14. 534

    Run times of two algorithms. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  15. 535

    Flow chart of Fuzzy Logic based control system. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  16. 536

    Block diagram for IoT-based irrigation system. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  17. 537

    Flow chart of Average Value-based control system. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  18. 538

    Hardware design for IoT-based irrigation system. by Gourab Saha (8987405)

    Published 2025
    “…Furthermore, crop yield is predicted using Linear Regression and Random Forest, achieving accuracies of 93.49% and 95.87%, respectively, while using RMSE (Root Mean Squared Error) as the loss function. …”
  19. 539
  20. 540