Showing 1,001 - 1,020 results of 1,716 for search '(( significant decrease decrease ) OR ( significant point decrease ))~', query time: 0.40s Refine Results
  1. 1001
  2. 1002
  3. 1003

    Sample size in each occupational subgroup. by Maryam Rafiee (10368504)

    Published 2025
    “…Furthermore, an increase of one point in work ability score leads to a decrease in WMSDs in the neck, wrists/hands, low back and hips/thighs regions by 13.5%, 8%, 11.5%, and 9%, respectively.…”
  4. 1004

    Correlation between different study variables. by Maryam Rafiee (10368504)

    Published 2025
    “…Furthermore, an increase of one point in work ability score leads to a decrease in WMSDs in the neck, wrists/hands, low back and hips/thighs regions by 13.5%, 8%, 11.5%, and 9%, respectively.…”
  5. 1005

    Study flow diagram. by Maryam Rafiee (10368504)

    Published 2025
    “…Furthermore, an increase of one point in work ability score leads to a decrease in WMSDs in the neck, wrists/hands, low back and hips/thighs regions by 13.5%, 8%, 11.5%, and 9%, respectively.…”
  6. 1006

    Final data used in the study. by Maryam Rafiee (10368504)

    Published 2025
    “…Furthermore, an increase of one point in work ability score leads to a decrease in WMSDs in the neck, wrists/hands, low back and hips/thighs regions by 13.5%, 8%, 11.5%, and 9%, respectively.…”
  7. 1007

    Demographic characteristics of participants. by Maryam Rafiee (10368504)

    Published 2025
    “…Furthermore, an increase of one point in work ability score leads to a decrease in WMSDs in the neck, wrists/hands, low back and hips/thighs regions by 13.5%, 8%, 11.5%, and 9%, respectively.…”
  8. 1008
  9. 1009

    Schematic model depicting the relationship between lipids and proteins by target gene knockdown. by Takuya Kitamoto (11721639)

    Published 2025
    “…Non-significant but decreasing trends are marked with small light blue arrows pointing downwards. …”
  10. 1010

    GNB1 and SCARB2 involvement in lipid metabolism of human subcutaneous adipocytes. by Takuya Kitamoto (11721639)

    Published 2025
    “…In the schematic diagram, significant increases are indicated by red arrows pointing upwards, while significant decreases are shown by blue arrows pointing downwards. …”
  11. 1011

    Dataset visualization diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  12. 1012

    Dataset sample images. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  13. 1013

    Performance comparison of different models. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  14. 1014

    C2f and BC2f module structure diagrams. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  15. 1015

    YOLOv8n detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  16. 1016

    YOLOv8n-BWG model structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  17. 1017

    BiFormer structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  18. 1018

    YOLOv8n-BWG detection results diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  19. 1019

    GSConv module structure diagram. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
  20. 1020

    Performance comparison of three loss functions. by Yaojun Zhang (389482)

    Published 2025
    “…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”