بدائل البحث:
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
significant shifts » significant insights (توسيع البحث), significant benefits (توسيع البحث)
shifts decrease » sizes decrease (توسيع البحث)
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
significant shifts » significant insights (توسيع البحث), significant benefits (توسيع البحث)
shifts decrease » sizes decrease (توسيع البحث)
-
381
Experimental hardware and software environment.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
382
PCA-CGAN K-fold experiment table.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
383
Classification model parameter settings.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
384
MIT-BIH expanded dataset proportion chart.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
385
AUROC Graphs of RF Model and ResNet.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
386
PCA-CGAN Model Workflow Diagram.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
387
Structural Diagrams of RF Model and ResNet Model.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
388
PCA-CGAN model convergence curve.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
389
PCA-CGAN Structure Diagram.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
390
Comparison of Model Five-classification Results.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
391
PCAECG-GAN K-fold experiment table.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
392
PCA-CGAN Pseudocode Table.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
393
PCA-CGAN Ablation Experiment Results.
منشور في 2025"…Experiments demonstrate that PCA-CGAN not only achieves stable convergence on a large-scale heterogeneous dataset comprising 43 patients for the first time but also resolves the “dilution effect” problem in data augmentation, avoiding the asymmetric phenomenon where Precision increases while Recall decreases. After data augmentation, the ResNet model’s average F1 score improved significantly, with particularly outstanding performance on rare categories such as atrial premature beats, far surpassing traditional methods like SigCWGAN and TD-GAN. …"
-
394
Results of normal and wide step width (cm).
منشور في 2025"…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …"
-
395
Raw data 16–20.
منشور في 2025"…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …"
-
396
Demographics, SD= Standard Deviation.
منشور في 2025"…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …"
-
397
Raw data 6–9 and 15.
منشور في 2025"…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …"
-
398
Raw data 1–5.
منشور في 2025"…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …"
-
399
Raw data 10–14.
منشور في 2025"…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …"
-
400
Coordination angle during running.
منشور في 2025"…Wide running significantly decreased the coordination variability in the ankle-knee sagittal during LR (p<0.001) and knee-hip sagittal during LR (p=0.007) and push-off (p=0.016). …"