Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant spatial » significant potential (Expand Search), significant negative (Expand Search)
spatial decrease » spatial release (Expand Search), substantial decrease (Expand Search), small decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant spatial » significant potential (Expand Search), significant negative (Expand Search)
spatial decrease » spatial release (Expand Search), substantial decrease (Expand Search), small decrease (Expand Search)
-
421
Comparative experiment.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
422
Pruning experiment.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
423
Parameter setting table.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
424
DTADH module.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
425
Ablation experiment.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
426
Multi scale detection.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
427
MFDPN module.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
428
Detection effect of different sizes.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
429
Radar chart comparing indicators.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
430
MFD-YOLO structure.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
431
Detection results of each category.
Published 2025“…Experimental results indicate that at a pruning level of 1.5, mAP@0.5 and mAP@0.5:0.95 improved by 3.9% and 4.6%, respectively, while computational load decreased by 21% and parameter count dropped by 53%. …”
-
432
Loading mode.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
433
Model and meshes.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
434
Shearing forces in the tension zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
435
Pile foundation section.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
436
Shearing force in the pressure zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
437
Strain-stress maps of vertical pile foundation.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
438
Displacement-inclination variation graph.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
439
Soil modeling and mechanical parameters.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
440
Location of monitored piles.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”