Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant time » significant threat (Expand Search), significant gap (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant time » significant threat (Expand Search), significant gap (Expand Search)
time decrease » time increased (Expand Search), sizes decrease (Expand Search), teer decrease (Expand Search)
-
1441
-
1442
-
1443
-
1444
-
1445
-
1446
Videofluoroscopic swallowing study parameters.
Published 2025“…Videofluoroscopic swallowing study, revealed significant abnormalities during the pharyngeal swallowing phase of swallowing in HSA LR20b mice, including increased pharyngeal residue area and prolonged pharyngeal transit time, suggesting that this mouse model was a valuable tool for studying dysphagia in myotonic dystrophy. …”
-
1447
ZM Modifier.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1448
Factor-level.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1449
Gradation composition of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1450
Technical specifications of mineral filler.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1451
Technical indicators of coarse aggregate.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1452
Technical specifications of fine aggregates.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1453
Rutting test results of asphalt mixtures.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1454
Gradation composition of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1455
Results of the orthogonal test.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1456
Rutting test results.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1457
Technical Specifications of ZM Modifier.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1458
Gradation curve of asphalt mixture.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1459
Rutting test machine.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”
-
1460
Basic performance indicators of base asphalt.
Published 2025“…Orthogonal experiments determined the optimal mixing parameters as a mixing temperature of 170°C, dry mixing time of 180 s, and wet mixing time of 240 s. Experimental results show that the ZM modifier significantly improves the dynamic stability and rutting resistance of the mixture, with dynamic stability increasing to 5245 and rut depth decreasing to 2.26 mm at a dosage of 0.5%. …”