Showing 681 - 700 results of 1,454 for search '(( significant decrease decrease ) OR ( significant variations decrease ))~', query time: 0.31s Refine Results
  1. 681

    Table 1_Next-generation sequencing of mitochondrial DNA reveals pathogenic variants and protective haplogroup D4 in esophageal cancer.xlsx by Xiucheng Jiang (18849564)

    Published 2025
    “…Notably, mitochondrial haplogroup D4 was significantly associated with a decreased risk of developing EC. …”
  2. 682

    Temporal Analysis of Genomic Features in <i>Neisseria gonorrhoeae</i> Across Sequence Types. by Elaheh Ebrahimi (20371357)

    Published 2025
    “…(C) The relationship between protein-coding gene count and collection date shows a weak but significant negative correlation (r = -0.18, p = 0.0121), implying a slight decrease in protein-coding genes over time, possibly due to pseudogenization or gene loss. …”
  3. 683
  4. 684
  5. 685
  6. 686
  7. 687
  8. 688
  9. 689

    The overall framework of CARAFE. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  10. 690

    KPD-YOLOv7-GD network structure diagram. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  11. 691

    Comparison experiment of accuracy improvement. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  12. 692

    Comparison of different pruning rates. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  13. 693

    Comparison of experimental results at ablation. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  14. 694

    Result of comparison of different lightweight. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  15. 695

    DyHead Structure. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  16. 696

    The parameters of the training phase. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  17. 697

    Structure of GSConv network. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  18. 698

    Comparison experiment of accuracy improvement. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  19. 699

    Improved model distillation structure. by Zhongjian Xie (4633099)

    Published 2025
    “…Secondly, a lightweight convolutional module is introduced to replace the standard convolutions in the Efficient Long-range Aggregation Network (ELAN-A) module, and the channel pruning techniques are applied to further decrease the model’s complexity. Finally, the experiment significantly enhanced the efficiency of feature extraction and the detection accuracy of the model algorithm through the integration of the Dynamic Head (DyHead) module, the Content-Aware Re-Assembly of Features (CARAFE) module, and the incorporation of knowledge distillation techniques. …”
  20. 700

    Data Sheet 1_Temporal and spatial variability of S-wave and coda attenuation in the Central Apennines, Italy.docx by Simona Gabrielli (11473572)

    Published 2025
    “…Our results showed a 13% variation in S-wave attenuation between the pre-sequence (2011–2016) and the sequence phase, with a significant 37% decrease in Q (increase in attenuation) detected during the Visso period. …”