Search alternatives:
significant variations » significant associations (Expand Search), significant implications (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
variations decrease » variation increases (Expand Search)
significant variations » significant associations (Expand Search), significant implications (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
variations decrease » variation increases (Expand Search)
-
741
-
742
Parallel bond model.
Published 2025“…When the freeze-thaw cycle reached 80 times, the ringing counts changes significantly, showing a continuous accumulation trend. …”
-
743
Meso-parameters of numerical simulation.
Published 2025“…When the freeze-thaw cycle reached 80 times, the ringing counts changes significantly, showing a continuous accumulation trend. …”
-
744
The simulated freeze-thaw cycle process.
Published 2025“…When the freeze-thaw cycle reached 80 times, the ringing counts changes significantly, showing a continuous accumulation trend. …”
-
745
Source data file.
Published 2024“…We conclude that iKIRs significantly decrease HLA class II protective associations and suggest that iKIRs regulate CD4<sup>+</sup> T cell responses in T1D.…”
-
746
Supporting data file.
Published 2024“…We conclude that iKIRs significantly decrease HLA class II protective associations and suggest that iKIRs regulate CD4<sup>+</sup> T cell responses in T1D.…”
-
747
Scheme of the test section.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
748
Effects on cooling air mass flow rate.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
749
3D model and section view of E3 NGV.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
750
Conditions for uncertainty analyses.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
751
Scheme for mesh convergence study.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
752
Main test parameters.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
753
3-D printed NGV specimen.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
754
Relative error bar of surface temperature.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
755
Effect on the NGV leading edge temperature.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
756
Schematic of the test equipment.
Published 2025“…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
-
757
Raw data set for Table 3.
Published 2025“…<div><p>A significant reduction in influenza incidence during the early days of COVID-19 pandemic was reported worldwide. …”
-
758
FluMart Data from 2018 to 2022.
Published 2025“…<div><p>A significant reduction in influenza incidence during the early days of COVID-19 pandemic was reported worldwide. …”
-
759
-
760
Regional work heterogeneity in LBBB differs between responders and non-responders, but LV stroke work, myocardial work, and efficiency do not.
Published 2024“…(D) Regional work heterogeneity (COVW) was significantly (p<0.05) higher at baseline in responders than non-responders and only decreased significantly after CRT (p = 0.05) in the responder group.…”