Showing 121 - 140 results of 913 for search '(( significant decrease decrease ) OR ( significantly ((a decrease) OR (point increase)) ))~', query time: 0.60s Refine Results
  1. 121

    Amplitude for A/L = 0.29. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  2. 122

    Amplitude for A/L = 0.338. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  3. 123

    Amplitude for A/L = 0.02. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  4. 124

    Amplitude for A/L = 0.03. by Muhammad Hammad Bucha (21736111)

    Published 2025
    “…By increasing the surface roughness of the bluff body, the lock-in region decreases and as a result, the harvested power from that bluff body is reduced. …”
  5. 125

    Consecutive time points of data collection. by Martin Matzka (2636344)

    Published 2025
    “…Effect sizes expectedly decreased over time. Physical quality of life remained relatively constant over time and was the only outcome for which social integration on admission was not a significant prognostic factor.…”
  6. 126

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  7. 127

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  8. 128

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  9. 129

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  10. 130

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  11. 131

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  12. 132

    An <i>In Situ</i> TEM Study of the Diffusivity of Gold Atoms in Nanocomposite Thin Films by Zirconia Co-Deposition: Implication for Neuromorphic Devices by Alberto Casu (1285227)

    Published 2025
    “…Molecular dynamics simulations corroborated these findings, showing a marked decrease in gold diffusivity when codeposited with zirconia: its inclusion reduced it by approximately a factor of 3, mainly due to zirconia’s high melting point. …”
  13. 133
  14. 134
  15. 135

    Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[<i>a</i>]pyrene in Early-Life-Stage Rainbow Trout by Alper James Alcaraz (20977320)

    Published 2025
    “…Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[<i>a</i>]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPOD<sub>EROD,28dph</sub> of 0.599 μg/L B[<i>a</i>]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPOD<sub>length,28dph</sub> of 1.77 μg/L B[<i>a</i>]P, with a notable decreasing trend in body weight. …”
  16. 136

    Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[<i>a</i>]pyrene in Early-Life-Stage Rainbow Trout by Alper James Alcaraz (20977320)

    Published 2025
    “…Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[<i>a</i>]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPOD<sub>EROD,28dph</sub> of 0.599 μg/L B[<i>a</i>]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPOD<sub>length,28dph</sub> of 1.77 μg/L B[<i>a</i>]P, with a notable decreasing trend in body weight. …”
  17. 137

    Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[<i>a</i>]pyrene in Early-Life-Stage Rainbow Trout by Alper James Alcaraz (20977320)

    Published 2025
    “…Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[<i>a</i>]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPOD<sub>EROD,28dph</sub> of 0.599 μg/L B[<i>a</i>]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPOD<sub>length,28dph</sub> of 1.77 μg/L B[<i>a</i>]P, with a notable decreasing trend in body weight. …”
  18. 138

    Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[<i>a</i>]pyrene in Early-Life-Stage Rainbow Trout by Alper James Alcaraz (20977320)

    Published 2025
    “…Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[<i>a</i>]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPOD<sub>EROD,28dph</sub> of 0.599 μg/L B[<i>a</i>]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPOD<sub>length,28dph</sub> of 1.77 μg/L B[<i>a</i>]P, with a notable decreasing trend in body weight. …”
  19. 139

    Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[<i>a</i>]pyrene in Early-Life-Stage Rainbow Trout by Alper James Alcaraz (20977320)

    Published 2025
    “…Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[<i>a</i>]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPOD<sub>EROD,28dph</sub> of 0.599 μg/L B[<i>a</i>]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPOD<sub>length,28dph</sub> of 1.77 μg/L B[<i>a</i>]P, with a notable decreasing trend in body weight. …”
  20. 140

    Transcriptomics Points-of-Departure (tPODs) to Support Hazard Assessment of Benzo[<i>a</i>]pyrene in Early-Life-Stage Rainbow Trout by Alper James Alcaraz (20977320)

    Published 2025
    “…Benchmark concentration analysis of transcriptomic responses at 4 dph, based on the most sensitive transcriptomic features, yielded tPODs between 0.028 and 0.47 μg/L B[<i>a</i>]P. At 28 dph, Cyp1a1 exhibited significantly increased catalytic activity, with biochemical POD, bPOD<sub>EROD,28dph</sub> of 0.599 μg/L B[<i>a</i>]P, while morphometric analysis showed significant growth inhibition in terms of length, with apical POD, aPOD<sub>length,28dph</sub> of 1.77 μg/L B[<i>a</i>]P, with a notable decreasing trend in body weight. …”