Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
point increase » unit increase (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
point increase » unit increase (Expand Search)
-
121
-
122
-
123
-
124
-
125
-
126
<i>SLC2A2</i> is essential for liver differentiation in developing vertebrates
Published 2025“…The mRNA expression levels were normalized to β-actin. A significant increase (p-value < 0.001, ***) in igf1r expression was observed in <i>SLC2A2</i> MO-injected embryos compared to the control group. …”
-
127
-
128
Amino acid metabolic pathways are influenced by the NC1 POM cycle over expression.
Published 2025“…Box and whisker plots of selected metabolites that displayed significant increase or decrease in the NC1 POM cycle producing strain (NC), red boxes, or empty vector producing strain (YC) green boxes. …”
-
129
Valve closing capability and hemolymph flow analysis.
Published 2025“…Pixel intensity in ROI 1 increases if hemolymph packages pass and decreases, if valves close after each heartbeat, respectively. …”
-
130
-
131
-
132
-
133
Comparison of Mean Absolute Error (MAE) in Millimeters as a Function of Kernel Size.
Published 2025“…After this point, the Reduced Depth model’s MAE increases significantly, while the Full Model’s performance stabilizes before slightly increasing again.…”
-
134
Dataset visualization diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
135
Dataset sample images.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
136
Performance comparison of different models.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
137
C2f and BC2f module structure diagrams.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
138
YOLOv8n detection results diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
139
YOLOv8n-BWG model structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”
-
140
BiFormer structure diagram.
Published 2025“…Results on a specialized dataset reveal that YOLOv8n-BWG outperforms YOLOv8n by increasing the mean Average Precision (mAP) by 4.2%, boosting recognition speed by 21.3% per second, and decreasing both the number of floating-point operations (FLOPs) by 28.9% and model size by 26.3%. …”