Showing 1,401 - 1,420 results of 5,845 for search '(( significant decrease decrease ) OR ( significantly ((we decrease) OR (a decrease)) ))~', query time: 0.46s Refine Results
  1. 1401

    FluMart Data from 2018 to 2022. by Smriti Shrestha (21212910)

    Published 2025
    “…<div><p>A significant reduction in influenza incidence during the early days of COVID-19 pandemic was reported worldwide. …”
  2. 1402

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  3. 1403

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  4. 1404

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  5. 1405

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  6. 1406

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  7. 1407

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  8. 1408

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  9. 1409

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  10. 1410

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  11. 1411

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  12. 1412

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  13. 1413

    Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry by Kenta Iitani (4175995)

    Published 2024
    “…Reduction of AcH by ADH<sub>RD</sub> consumed NADH, leading to a decrease in blue fluorescence (ex. 340 nm, fl. 490 nm). …”
  14. 1414

    Primers for qPCR. by Kaitao Zhao (3617825)

    Published 2025
    “…Results revealed the MRE11–RAD50–NBS1 (MRN) complex as a potential factor. Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  15. 1415

    Antibodies used for western blotting. by Kaitao Zhao (3617825)

    Published 2025
    “…Results revealed the MRE11–RAD50–NBS1 (MRN) complex as a potential factor. Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  16. 1416

    Target sequences of siRNAs. by Kaitao Zhao (3617825)

    Published 2025
    “…Results revealed the MRE11–RAD50–NBS1 (MRN) complex as a potential factor. Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  17. 1417

    Plasmids information. by Kaitao Zhao (3617825)

    Published 2025
    “…Results revealed the MRE11–RAD50–NBS1 (MRN) complex as a potential factor. Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  18. 1418

    Raw data. by Kaitao Zhao (3617825)

    Published 2025
    “…Results revealed the MRE11–RAD50–NBS1 (MRN) complex as a potential factor. Transiently or stably knockdown of MRE11, RAD50 or NBS1 in hepatocytes before HBV infection significantly decreased viral markers, including cccDNA, while reconstitution reversed the effect. …”
  19. 1419
  20. 1420

    Image5_A distinct immune landscape in anti-synthetase syndrome profiled by a single-cell genomic study.jpeg by Jiayu Ding (12005975)

    Published 2024
    “…</p>Results<p>After meticulous annotation of PBMCs, we noticed a significant decrease in the proportion of mucosal-associated invariant T (MAIT) cells in ASS patients compared to HCs, while there was a notable increase in the proportion of proliferative NKT cells. …”