Showing 21,241 - 21,260 results of 21,342 for search '(( significant decrease decrease ) OR ( significantly decreased decrease ))', query time: 0.41s Refine Results
  1. 21241

    Table13_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  2. 21242

    Minimal test data set by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  3. 21243

    Table12_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  4. 21244

    OSNet network structure. by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  5. 21245

    Table3_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  6. 21246

    Table9_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  7. 21247

    Image1_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.tif by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  8. 21248

    Table7_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  9. 21249

    Table6_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  10. 21250

    YOLOv8 overall framework. by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  11. 21251

    The performance of YOFGD model on MOT16. by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  12. 21252

    Table11_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  13. 21253

    Network structure of OSA. by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  14. 21254

    Table8_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  15. 21255

    The performance of S-YOFEO model on MOT17. by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  16. 21256

    Table5_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  17. 21257

    Five multi-target tracking evaluation indexes. by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  18. 21258

    Algorithm flowchart of OFEO. by Wenshun Sheng (21485393)

    Published 2025
    “…OSA is highly sensitive to information of different scales, and its one-time aggregation property substantially decreases the computational overhead of the model. …”
  19. 21259

    Table10_Unveiling the molecular landscape of PCOS: identifying hub genes and causal relationships through bioinformatics and Mendelian randomization.xlsx by Yifang He (18126257)

    Published 2024
    “…</p>Conclusions<p>Our bioinformatics combined with MR analysis revealed that CD93, CYBB, DOCK8, IRF1, MBOAT1, MYO1F, NLRP1, NOD2, PIK3R1 increase the risk of PCOS, while PTER decreases the risk of PCOS. This discovery has implications for clinical decision-making in terms of disease diagnosis, prognosis, treatment strategies, and opens up novel avenues for drug development.…”
  20. 21260

    Data Sheet 2_Effect of thyme-ivy syrup on antiviral immune response in patients with mild COVID-19: a prospective, open-label, randomized pilot study.docx by Stephanie Dauth (13274397)

    Published 2025
    “…Significant between-group differences were observed for changes in some parameters at day 4 (e.g., IL-10) and day 14. …”