Showing 721 - 740 results of 4,661 for search '(( significant decrease decrease ) OR ( significantly higher decrease ))~', query time: 0.33s Refine Results
  1. 721
  2. 722
  3. 723
  4. 724

    Model A: Logistic structural model. by Abigail A. Lee (19935335)

    Published 2024
    “…There was a slight correlation between political ideology with more conservative leanings predicting lower vaccine hesitancy. Additionally, higher income slightly predicted decreased HPV vaccine hesitancy. …”
  5. 725

    Testing set error. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  6. 726

    Internal structure of an LSTM cell. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  7. 727

    Prediction effect of each model after STL. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  8. 728

    The kernel density plot for data of each feature. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  9. 729

    Analysis of raw data prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  10. 730

    Flowchart of the STL. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  11. 731

    SARIMA predicts season components. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  12. 732

    BWO-BiLSTM model prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  13. 733

    Bi-LSTM architecture diagram. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  14. 734

    STL Linear Combination Forecast Graph. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  15. 735

    LOSS curves for BWO-BiLSTM model training. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  16. 736

    Analysis of STL-PCA prediction results. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  17. 737

    Accumulated contribution rate of PCA. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  18. 738

    Figure of ablation experiment. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  19. 739

    Flowchart of the STL-PCA-BWO-BiLSTM model. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”
  20. 740

    Parameter optimization results of BiLSTM. by Xiangjuan Liu (618000)

    Published 2025
    “…Further integration of Spearman correlation analysis and PCA dimensionality reduction created multidimensional feature sets, revealing substantial accuracy improvements: The BiLSTM model achieved an 83.6% cumulative MAE reduction from 1.65 (raw data) to 0.27 (STL-PCA), while traditional models like Prophet showed an 82.2% MAE decrease after feature engineering optimization. Finally, the Beluga Whale Optimization (BWO)-tuned STL-PCA-BWO-BiLSTM hybrid model delivered optimal performance on test sets (RMSE = 0.22, MAE = 0.16, MAPE = 0.99%, ), exhibiting 40.7% higher accuracy than unoptimized BiLSTM (MAE = 0.27). …”