Search alternatives:
significantly improving » significantly improved (Expand Search), significantly improve (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significantly improving » significantly improved (Expand Search), significantly improve (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
-
1081
Figure of ablation experiment.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1082
Flowchart of the STL-PCA-BWO-BiLSTM model.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1083
Parameter optimization results of BiLSTM.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1084
Descriptive statistical analysis of data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1085
The MAE value of the model under raw data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1086
Three error values under raw data.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1087
Decomposition of time scries plot.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1088
-
1089
-
1090
-
1091
-
1092
Summary of significance levels for comparison of surgical segment ROM between different test groups.
Published 2025Subjects: -
1093
Descriptive statistics of alcohol consumption in G7 countries (in litres/capita).
Published 2024Subjects: -
1094
-
1095
-
1096
-
1097
-
1098
-
1099
-
1100