Search alternatives:
significantly improving » significantly improved (Expand Search), significantly improve (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significantly improving » significantly improved (Expand Search), significantly improve (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
-
1921
-
1922
-
1923
-
1924
-
1925
Example of sample data.
Published 2025“…The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. …”
-
1926
Structure of BPNN.
Published 2025“…The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. …”
-
1927
The workflow of EGA-BPNN.
Published 2025“…The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. …”
-
1928
S1 Data -
Published 2025“…The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. …”
-
1929
Algorithm flow of the GA-BPNN model.
Published 2025“…The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. …”
-
1930
Modeling method used.
Published 2025“…The most influential variables for predicting larval presence were the mean of Normalized Difference Vegetation Index (NDVI), texture indices from both NDVI, brightness index (BI), and the panchromatic image. Urban vegetation significantly influences larval presence, although higher vegetation index values correlate with a decreased probability of larval occurrence. …”
-
1931
-
1932
Table 1_Intravitreal aflibercept for diabetic macular edema: structural and functional improvements.docx
Published 2025“…After treatment, CRT decreased, BVCA, MLS, and fixation stability improved (all p < 0.001). …”
-
1933
-
1934
-
1935
-
1936
Overall model framework.
Published 2024“…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
-
1937
Key parameters of LSTM training model.
Published 2024“…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
-
1938
Comparison chart of model evaluation results.
Published 2024“…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
-
1939
Model performance evaluation results.
Published 2024“…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”
-
1940
The result compared with other existing methods.
Published 2024“…The results show that: (1) From the experimental data of word sense disambiguation, the accuracy of the SMOSS-LSTM model proposed in this paper is the lowest when the context range is "3+3", then it rises in turn at "5+5" and "7+7", reaches the highest at "7+7", and then begins to decrease at "10+10"; (2) Compared with the control group, the accuracy of syntactic analysis in the experimental group reached 89.5%, while that in the control group was only 73.2%. (3) In the aspect of English text error detection, the detection accuracy of the proposed model in the experimental group is as high as 94.8%, which is significantly better than the traditional SMOSS-based text error detection method, and its accuracy is only 68.3%. (4) Compared with other existing researches, although it is slightly inferior to Bidirectional Encoder Representations from Transformers (BERT) in word sense disambiguation, this proposed model performs well in syntactic analysis and English text error detection, and its comprehensive performance is excellent. …”