Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significantly point » significantly onto (Expand Search), significantly poorer (Expand Search), significantly lower (Expand Search)
point decrease » point increase (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significantly point » significantly onto (Expand Search), significantly poorer (Expand Search), significantly lower (Expand Search)
point decrease » point increase (Expand Search)
-
3501
-
3502
-
3503
-
3504
-
3505
-
3506
-
3507
-
3508
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3509
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3510
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3511
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3512
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3513
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3514
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3515
Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature
Published 2024“…We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …”
-
3516
-
3517
-
3518
-
3519
-
3520