Showing 861 - 880 results of 1,716 for search '(( significant decrease decrease ) OR ( significantly point decrease ))~', query time: 0.33s Refine Results
  1. 861
  2. 862
  3. 863
  4. 864
  5. 865
  6. 866
  7. 867

    Thermophysical Properties of <i>n</i>‑Hexane under the Influence of Dissolved Hydrogen by Experiments and Equilibrium Molecular Dynamics Simulations by Paul Damp (22538595)

    Published 2025
    “…With increasing <i>p</i> and <i>x</i><sub>H2</sub>, the measurement results for <i>a</i> and <i>D</i><sub>11</sub> are not significantly affected, except for states approaching the critical point. …”
  8. 868
  9. 869
  10. 870
  11. 871
  12. 872
  13. 873

    Scheme of the test section. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  14. 874

    Effects on cooling air mass flow rate. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  15. 875

    3D model and section view of E3 NGV. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  16. 876

    Conditions for uncertainty analyses. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  17. 877

    Scheme for mesh convergence study. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  18. 878

    Main test parameters. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  19. 879

    3-D printed NGV specimen. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”
  20. 880

    Relative error bar of surface temperature. by Decang Lou (21439960)

    Published 2025
    “…The results reveal that the large deviation in the manufactured vane (up to 0.5 mm at the leading edge) alters the direction of the coolant flowing out from the leading-edge film-cooling holes, affects the film coverage along the surface, and in consequence, causes the temperature near the stagnation point increasing by approximately 40 K. Furthermore, variations in coolant inlet pressure, decreasing by 10 kPa, and temperature, increasing by 10 K, result in the vane surface temperature increased by 20 ~ 30 K. …”