بدائل البحث:
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
significantly reduce » significantly reduced (توسيع البحث), significantly greater (توسيع البحث), significantly enhance (توسيع البحث)
reduce decrease » reduce disease (توسيع البحث), reduce depressive (توسيع البحث), induces decreased (توسيع البحث)
significant decrease » significant increase (توسيع البحث), significantly increased (توسيع البحث)
significantly reduce » significantly reduced (توسيع البحث), significantly greater (توسيع البحث), significantly enhance (توسيع البحث)
reduce decrease » reduce disease (توسيع البحث), reduce depressive (توسيع البحث), induces decreased (توسيع البحث)
-
1301
-
1302
-
1303
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1304
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1305
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1306
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1307
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1308
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1309
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1310
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1311
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1312
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1313
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1314
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1315
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1316
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1317
Lubrication Behavior of Fullerene-Coated Nanoparticles on Rough Surfaces
منشور في 2025"…The optimal nanoparticle concentration reaches approximately 88.8% under high-load conditions, with each 3.55% increase in concentration resulting in a 0.45% reduction in structural deformation and a 0.59 nN decrease in friction. Under low-load conditions, the optimal concentration ranges from 15% to 30% across varying surface roughness levels, reducing friction by 30%–55% compared to the peak kinetic energy conditions. …"
-
1318
Early IL-33 administration expands trTregs and improves disease outcome in infected mice.
منشور في 2025الموضوعات: -
1319
IL-33 supplementation fails to prevent trTreg reduction in established infection.
منشور في 2025الموضوعات: -
1320