Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significantly we » significantly _ (Expand Search), significantly i (Expand Search), significantly lower (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significantly we » significantly _ (Expand Search), significantly i (Expand Search), significantly lower (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
1101
-
1102
-
1103
-
1104
Upper-crust thermal evolution of the Patagonian Precordillera basement (Argentina): insights from fission track, (U-Th)/He thermochronology and geodynamic significance
Published 2025“…Most thermal models show similar decreasing time-temperature paths (t-T), from which three stages are distinguished. …”
-
1105
S1 File -
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1106
Confusion matrix for ClinicalBERT model.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1107
Confusion matrix for LastBERT model.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1108
Student model architecture.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1109
Configuration of the LastBERT model.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1110
Confusion matrix for DistilBERT model.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1111
ROC curve for LastBERT model.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1112
Sample Posts from the ADHD dataset.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1113
Top-level overview for ADHD classification study.
Published 2025“…Referring to LastBERT, a customized student BERT model, we significantly lowered model parameters from 110 million BERT base to 29 million-resulting in a model approximately 73.64% smaller. …”
-
1114
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1115
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1116
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1117
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1118
Dynamic Covalent Chemistry Enabled Closed-Loop Recycling of Thermally Modified Polymer Membrane
Published 2025“…Thermal and mechanical characterizations confirmed the great stability of the membranes, with the Diels–Alder reaction enabling depolymerization and reformation of the network without causing significant degradation. Additionally, the RFMs were recycled the third time, maintaining the fluxes (752 to 823 LMH) from the previous generation with a slight decrease in separation efficiency in dichloromethane-water emulsion separation (98.3 to 97%). …”
-
1119
-
1120