Search alternatives:
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant factor » significant factors (Expand Search)
factor decrease » factors increases (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant factor » significant factors (Expand Search)
factor decrease » factors increases (Expand Search)
-
1201
-
1202
-
1203
-
1204
-
1205
-
1206
-
1207
-
1208
-
1209
-
1210
-
1211
Trends of incident opioid users, L-TOT users, and L-TOT discontinuers between 2009 and 2013.
Published 2025Subjects: -
1212
-
1213
-
1214
-
1215
-
1216
Testing set error.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1217
Internal structure of an LSTM cell.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1218
Prediction effect of each model after STL.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1219
The kernel density plot for data of each feature.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”
-
1220
Analysis of raw data prediction results.
Published 2025“…<div><p>This study constructs a multi-stage hybrid forecasting model using hog price time series data and its influencing factors to improve prediction accuracy. First, seven benchmark models including Prophet, ARIMA, and LSTM were applied to raw price series, where results demonstrated that deep learning models significantly outperformed traditional methods. …”