Search alternatives:
significant factor » significant factors (Expand Search)
factor decrease » factors increases (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant factor » significant factors (Expand Search)
factor decrease » factors increases (Expand Search)
we decrease » _ decrease (Expand Search), nn decrease (Expand Search), mean decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
1
-
2
Results of significance for regression factors.
Published 2024“…Micro-cracks appeared in the cemented body by Day 7, resulting in a slight decrease in strength (3.92%) from Day 3 to Day 7. …”
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
Juvenile demyelination leads to a decrease in axonal complexity of PFC PV interneurons.
Published 2025Subjects: -
13
-
14
Comparison of questionnaire scores among genotypes for the significant associations.
Published 2025Subjects: -
15
-
16
HFD decreases intermediate-term memory.
Published 2025“…<p>(A) The survival rate of 10d <i>Canton-S</i> fed with ND or HFD was observed for 7 days. …”
-
17
Data from: Colony losses of stingless bees increase in agricultural areas, but decrease in forested areas
Published 2025“…</p><p><br></p><p dir="ltr">#METADATA</p><p dir="ltr">#'data.frame': 472 obs. of 28 variables:</p><p dir="ltr"> #$ ID: Factor variable; a unique identity for the response to the survey</p><p dir="ltr"> #$ Year: Factor variable; six factors available (2016, 2017, 2018, 2019, 2020, 2021) representing the year for the response to the survey</p><p dir="ltr"> #$ N_dead_annual: Numeric variable; representing the number of colonies annually lost</p><p dir="ltr">#$ N_alive_annual: Numeric variable; representing the number of colonies annually alive</p><p dir="ltr"> #$ N_dead_dry: Numeric variable; representing the number of colonies lost during the dry season</p><p dir="ltr">#$ N_alive_dry: Numeric variable; representing the number of colonies alive during the dry season</p><p dir="ltr"> #$ N_dead_rainy: Numeric variable; representing the number of colonies lost during the rainy season</p><p dir="ltr">#$ N_alive_rainy: Numeric variable; representing the number of colonies alive during the rainy season</p><p dir="ltr"> #$ Education: Factor variable; four factors are available ("Self-taught","Learned from another melip","Intro training","Formal tech training"), representing the training level in meliponiculture</p><p dir="ltr"> #$ Operation_Size: Numeric variable; representing the number of colonies managed by the participant (in n)</p><p dir="ltr"> #$ propAgri: Numeric variable; representing the percentage of agricultural area surrounding the meliponary (in %)</p><p dir="ltr"> #$ propForest: Numeric variable; representing the percentage of forested area surrounding the meliponary (in %)</p><p dir="ltr">#$ temp.avg_annual: Numeric variable; representing the average annual temperature (in ºC)</p><p dir="ltr">#$ precip_annual_sum: Numeric variable; representing the total accumulated precipitation (in mm)</p><p dir="ltr">#$ precip_Oct_March_sum: Numeric variable; representing the total accumulated precipitation between October to March (in mm)</p><p dir="ltr">#$ precip_Apri_Sept_sum: Numeric variable; representing the total accumulated precipitation between April to September (in mm)</p><p dir="ltr">#$ temp.avg_Oct_March: Numeric variable; representing the total accumulated precipitation between October to March (in ºC)</p><p dir="ltr">#$ temp.avg_Apri_Sept: Numeric variable; representing the total accumulated precipitation between April to September (in ºC)</p><p dir="ltr"> #$ Importance_dead: Factor variable; three factors are available Normal","High","Very high"), representing the perception of the significance of annual colony losses</p><p dir="ltr"> #$ Climatic_environmental: Binary variable; representing if the participant considered climatic and environmental problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Contamination: Binary variable; representing if the participant considered contamination problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Nutritional: Binary variable; representing if the participant considered nutritional problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Sanitary: Binary variable; representing if the participant considered sanitary problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Queen: Binary variable; representing if the participant considered queen problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Time: Binary variable; representing if the participant considered time problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Economic: Binary variable; representing if the participant considered economic problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Attacks: Binary variable; representing if the participant considered time attacks as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Swarming: Binary variable; representing if the participant considered swarming problems as a potential driver (1) or not (0) of their annual colony losses</p><p><br></p>…”
-
18
-
19
-
20