Search alternatives:
significant force » significant source (Expand Search), significant sources (Expand Search), significant concern (Expand Search)
force increased » forces increased (Expand Search), fold increased (Expand Search), from increased (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
significant force » significant source (Expand Search), significant sources (Expand Search), significant concern (Expand Search)
force increased » forces increased (Expand Search), fold increased (Expand Search), from increased (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
-
141
-
142
-
143
-
144
-
145
-
146
-
147
-
148
Force–displacement curves of M5.
Published 2023“…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
-
149
Force–displacement curves of M3.
Published 2023“…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
-
150
Force–displacement curves of M4.
Published 2023“…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
-
151
Force–displacement curves of M1.
Published 2023“…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
-
152
Force–displacement curves of M2.
Published 2023“…The simulation results indicate that: i) the shear failure and flexural failure were the main failure modes of masonry walls; ii) shear failure could be viewed as the main failure mode of the model when the aspect ratio was less than 1.00; however, the flexural failure was considered to be the main failure mode of the model once the aspect ratio was greater than 1.00; iii) when a vertical load of 0.20 MPa was applied to the model, only flexural failure was observed, regardless of whether the aspect ratio of the model increased or decreased; the flexural shear mixed failure was captured within the range of 0.30 MPa– 0.50 MPa; the shear failure was the main failure mode within the range of 0.60 MPa– 0.70 MPa; and iv) the wall with an aspect ratio less than 1.00 could bear a higher horizontal load, and the increase in vertical load can significantly improve the horizontal load of the wall. …”
-
153
Gradation determined by the step-by-step filling test on the coarse aggregates.
Published 2022Subjects: -
154
-
155
-
156
-
157
-
158
-
159
-
160