Showing 1 - 20 results of 4,494 for search '(( significant greater decrease ) OR ( significant ((long decrease) OR (point decrease)) ))', query time: 0.46s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16

    All data points from Fig 2. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
  17. 17

    All data points from Fig 5. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
  18. 18

    All data points from Fig 8. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
  19. 19

    All data points from Fig 3. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”
  20. 20

    All data points from Fig 1. by Sara Hijazi (21656615)

    Published 2025
    “…Specifically, we observed that demyelination caused an impairment in the ability of PV interneurons to sustain high-frequency firing associated with a substantial decrease in Kv3-specific currents. We also found a significant impairment in PV interneuron autaptic self-inhibitory transmission, a feature implicated in temporal control of PV interneuron firing during cortical network activity. …”