Search alternatives:
small decrease » small increased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
small decrease » small increased (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
241
Enhanced Reaction Kinetics in Stationary Two-Phase Flow through Porous Media
Published 2025“…The global kinetics initially increase before experiencing a monotonic decrease with significant fluctuations caused by the displacement of the nonwetting phase. …”
-
242
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
243
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
244
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
245
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
246
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
247
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
248
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
249
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
250
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
251
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
252
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
253
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
254
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
255
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
256
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
257
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
258
Tourism determinants’ marginal effects.
Published 2025“…By employing this innovative approach, we uncover the complex interdependencies between economic freedom and tourism and highlight the significance of regional economic characteristics on the tourism sector’s health. …”
-
259
Descriptive statistics from 2005 to 2018.
Published 2025“…By employing this innovative approach, we uncover the complex interdependencies between economic freedom and tourism and highlight the significance of regional economic characteristics on the tourism sector’s health. …”
-
260
Models 7 to 12: estimation results.
Published 2025“…By employing this innovative approach, we uncover the complex interdependencies between economic freedom and tourism and highlight the significance of regional economic characteristics on the tourism sector’s health. …”