Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search)
we decrease » _ decrease (Expand Search), a decrease (Expand Search), nn decrease (Expand Search)
-
221
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
222
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
223
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
224
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
225
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
226
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
227
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
228
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
229
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
230
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
231
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
232
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
233
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
234
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
235
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
236
Heterogeneous Condensation on Simplified Viral Envelope Protein Structures
Published 2025“…Elucidating the mechanisms of heterogeneous condensation on viral and bacterial envelopes is crucial for understanding biothreat transport phenomena and optimizing capture efficiency in condensation-based detection devices. We investigate the impact of viral envelope geometric parameters [e.g., surface structure pitch-to-diameter ratio (<i>p</i>/<i>d</i>)] due to protruding glycoproteins and surface wettability [via liquid–solid interaction intensity (<i>f</i>)] on heterogeneous condensation using molecular dynamics simulations. …”
-
237
Tourism determinants’ marginal effects.
Published 2025“…By employing this innovative approach, we uncover the complex interdependencies between economic freedom and tourism and highlight the significance of regional economic characteristics on the tourism sector’s health. …”
-
238
Descriptive statistics from 2005 to 2018.
Published 2025“…By employing this innovative approach, we uncover the complex interdependencies between economic freedom and tourism and highlight the significance of regional economic characteristics on the tourism sector’s health. …”
-
239
Models 7 to 12: estimation results.
Published 2025“…By employing this innovative approach, we uncover the complex interdependencies between economic freedom and tourism and highlight the significance of regional economic characteristics on the tourism sector’s health. …”
-
240
Models 1 to 6: estimation results.
Published 2025“…By employing this innovative approach, we uncover the complex interdependencies between economic freedom and tourism and highlight the significance of regional economic characteristics on the tourism sector’s health. …”