يعرض 341 - 360 نتائج من 8,852 نتيجة بحث عن '(( significant impact decrease ) OR ( significantly ((we decrease) OR (teer decrease)) ))', وقت الاستعلام: 0.54s تنقيح النتائج
  1. 341

    Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces حسب Niju K. Mohammed (22631779)

    منشور في 2025
    "…The generation of compound droplets through droplet–particle interactions has garnered significant attention due to its relevance in diagnostics, biomolecule encapsulation, functional coating, and targeted drug delivery. …"
  2. 342

    Dynamics of Solid–Liquid Compound Droplets on Cylindrically Concave Superhydrophobic Surfaces حسب Niju K. Mohammed (22631779)

    منشور في 2025
    "…The generation of compound droplets through droplet–particle interactions has garnered significant attention due to its relevance in diagnostics, biomolecule encapsulation, functional coating, and targeted drug delivery. …"
  3. 343
  4. 344
  5. 345
  6. 346

    Coefficient plot of short-run effects. حسب Ryan P. Thombs (9138968)

    منشور في 2025
    الموضوعات:
  7. 347
  8. 348

    Coefficient plot of long-run effects. حسب Ryan P. Thombs (9138968)

    منشور في 2025
    الموضوعات:
  9. 349
  10. 350
  11. 351

    Classification of panels after the impact test. حسب Tek Raj Gyawali (20550560)

    منشور في 2025
    "…Panels reinforced with thinner PVA fibers exhibited superior performance in resisting compressive and impact loads. This enabled a reduction in fiber content to 1.2% (a 60% decrease) and panel thickness to 22 mm (a 4.35% decrease) compared to panels with thicker fibers. …"
  12. 352

    Classification of panels after the impact test. حسب Tek Raj Gyawali (20550560)

    منشور في 2025
    "…Panels reinforced with thinner PVA fibers exhibited superior performance in resisting compressive and impact loads. This enabled a reduction in fiber content to 1.2% (a 60% decrease) and panel thickness to 22 mm (a 4.35% decrease) compared to panels with thicker fibers. …"
  13. 353

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"
  14. 354

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"
  15. 355

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"
  16. 356

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"
  17. 357

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"
  18. 358

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"
  19. 359

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"
  20. 360

    Effect of the Surface Peak–Valley Features on Droplet Impact Dynamics under Leidenfrost Temperature حسب Yunlong Jiao (6672764)

    منشور في 2024
    "…When the microtexture area occupancy is 50%, it is worth noting that the micropit and micropillar surfaces have nearly same roughness (<i>Sa</i>), but the Leidenfrost temperature was notably higher on the micropit surface with negative skewness (<i>Ssk</i> < 0), which was related to differences in vapor flow dynamics. We further find that the Weber number (<i>We</i>) significantly influences the Leidenfrost point, with the droplet impact wall behavior going through the states of film bounce back, ejecting tiny droplets and bounce back, and ultimately droplet breakup as the <i>We</i> increases. …"