Search alternatives:
significant improvements » significant improvement (Expand Search)
improvements decrease » improvements increased (Expand Search), improvements across (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
significant improvements » significant improvement (Expand Search)
improvements decrease » improvements increased (Expand Search), improvements across (Expand Search)
significant decrease » significant increase (Expand Search), significantly increased (Expand Search)
-
3801
Pile foundation section.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3802
Shearing force in the pressure zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3803
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
3804
Strain-stress maps of vertical pile foundation.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3805
Displacement-inclination variation graph.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3806
Soil modeling and mechanical parameters.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3807
Location of monitored piles.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3808
Axial force in the pressure zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3809
Pile-soil interaction.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3810
Bending moment in the tension zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3811
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
3812
Sketch of forces on vertical and inclined piles.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3813
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
3814
Displacement cloud maps.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3815
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
3816
Morphing mesh.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”
-
3817
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
3818
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
3819
Proteome and Metabolome Profiling of Anticoagulant Disorders Induced by Familial Protein S Deficiency
Published 2024“…Furthermore, 9 differential proteins correlated significantly with protein S, comprising A2M, AGT, APOE, FGG, GPLD1, IGHV1–69, CFHR5, CPN2, and CA1. …”
-
3820
Bending moment in the pressure zone.
Published 2025“…The outer ring of inclined piles in the VIPF significantly enhances structural stiffness through spatial synergy, achieving uniform load distribution and effective redistribution of pile-body internal forces. …”