Search alternatives:
significance testing » significance set (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
Showing 1,261 - 1,280 results of 14,741 for search '(( significant increase decrease ) OR ( significance testing decrease ))', query time: 0.43s Refine Results
  1. 1261
  2. 1262
  3. 1263
  4. 1264
  5. 1265
  6. 1266
  7. 1267
  8. 1268

    Position of each slice of anthracite. by Danan Zhao (20861666)

    Published 2025
    “…The results showed that the adsorption capacities of anthracite for these three gases are in the order of CO<sub>2</sub> > CH<sub>4</sub> > N<sub>2</sub>, and that the adsorption capacity increases with increasing gas injection pressure. The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. …”
  9. 1269

    Minimal data set. by Danan Zhao (20861666)

    Published 2025
    “…The results showed that the adsorption capacities of anthracite for these three gases are in the order of CO<sub>2</sub> > CH<sub>4</sub> > N<sub>2</sub>, and that the adsorption capacity increases with increasing gas injection pressure. The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. …”
  10. 1270

    Schematic of the experiment apparatus. by Danan Zhao (20861666)

    Published 2025
    “…The results showed that the adsorption capacities of anthracite for these three gases are in the order of CO<sub>2</sub> > CH<sub>4</sub> > N<sub>2</sub>, and that the adsorption capacity increases with increasing gas injection pressure. The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. …”
  11. 1271

    Physicochemical properties of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>. by Danan Zhao (20861666)

    Published 2025
    “…The results showed that the adsorption capacities of anthracite for these three gases are in the order of CO<sub>2</sub> > CH<sub>4</sub> > N<sub>2</sub>, and that the adsorption capacity increases with increasing gas injection pressure. The CO<sub>2</sub>/CH<sub>4</sub>/N<sub>2</sub> gas molecule adsorption capacity of the anthracite macromolecular structure model decreases with increasing temperature. …”
  12. 1272
  13. 1273
  14. 1274
  15. 1275
  16. 1276
  17. 1277
  18. 1278
  19. 1279
  20. 1280