Search alternatives:
increase decrease » increased release (Expand Search), increased crash (Expand Search)
degs decrease » mean decrease (Expand Search), we decrease (Expand Search), deaths decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
increase decrease » increased release (Expand Search), increased crash (Expand Search)
degs decrease » mean decrease (Expand Search), we decrease (Expand Search), deaths decreased (Expand Search)
teer decrease » mean decrease (Expand Search), greater decrease (Expand Search)
-
2601
Socio-demographic and clinical characteristics of participants by study site.
Published 2025Subjects: -
2602
-
2603
-
2604
-
2605
-
2606
-
2607
-
2608
-
2609
-
2610
-
2611
Comparison with Existing Studies.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
2612
Specimen Preparation and Experimental Setup.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
2613
UCS texts data.
Published 2025“…The results indicate that: (1) the presence of pores prolongs both the time to failure and the onset of the AE burst stage, with longer durations observed at higher pore dip angles; (2) AE signal amplitude and frequency vary significantly across different loading stages, and the b-value exhibits an “increase–fluctuation–decrease” trend, with the decreasing stage serving as a precursor to rock instability; (3) pore dip angle strongly influences crack propagation types: dip angles of 0°–30° favor axial cracks and through-going wing cracks, 45°–75° angles tend to induce co-planar and wing crack connectivity, while 90° angles cause crack deviation, hindering through-going failure; (4) intact rock fails in a tensile–shear mixed mode, whereas the number of shear cracks in rocks with pores initially increases and then decreases with dip angle, reaching a maximum at 45°, resulting in shear-dominated failure. …”
-
2614
β-NAD increases intracellular cAMP concentration via soluble adenylyl cyclase, but this pathway is not essential for the relaxing effect.
Published 2025“…<p>(A, B) Recording of intracellular cAMP concentration in HBSMC via FRET, with low FRET ratio indicating high cAMP concentration. β-NAD and isoproterenol cause a decrease in FRET ratio, reflecting rise in intracellular cAMP concentration. …”
-
2615
-
2616
-
2617
-
2618
-
2619
-
2620